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1. Introduction and summary

The AdS/CFT correspondence provides a powerful tool with which to study the strong-

coupling behavior of certain non-Abelian gauge theories in terms of semi-classical super-

gravity descriptions [1 – 4]. The most-studied example is four-dimensional N = 4 SU(N)

supersymmetric Yang-Mills theory (SYM) which, in the limit of large N and large ’t Hooft

coupling, is described by type IIB supergravity on AdS5 × S5. Since at finite temperature

the superconformal invariance of this theory is broken, and since fundamental matter can

be added by introducing D7-branes [5], it is thought that this model may shed light on

certain aspects of strongly-coupled QCD plasmas. For example, for any strongly-coupled

large N gauge theory with a gravity dual, the dimensionless ratio of the shear viscos-

ity over entropy density has been found to be 1/4π [6 – 9] in rough agreement with some

hydrodynamic models of RHIC collisions [10, 11].

More generally, the RHIC experiment has raised the issue of how to calculate the

transport properties of relativistic partons in a hot, strongly-coupled gauge theory plasma.

For example, one would like to calculate the friction coefficient and jet quenching parameter

which are measures of the rate at which partons lose energy to the surrounding plasma [12 –

15]. Using conventional quantum field theoretic tools one can calculate these parameters

only when the partons are interacting perturbatively with the surrounding plasma. The

AdS/CFT correspondence may be a suitable framework in which to study strongly-coupled

QCD-like plasmas. In fact, attempts to use the AdS/CFT correspondence to calculate these

quantities have been made in [16 – 20] and were generalized in various ways in [21 – 37].

Finite-temperature N = 4 SU(N) SYM theory is equivalent to the near-horizon limit

of type IIB supergravity on the background of a large number N of non-extremal D3-branes

stacked at a point. From the perspective of five-dimensional gauged supergravity, this is
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the background of an AdS black hole whose Hawking temperature equals the temperature

of the gauge theory. According to the AdS/CFT dictionary, string configurations on this

background can correspond to quarks and antiquarks in an N = 4 SYM thermal bath [38 –

41], where the quark bare mass is determined by the radial location of the string endpoints

on a probe D7-brane.

A stationary single quark can be described by a string that stretches from the probe

D7-brane to the black hole horizon. The semi-infinite string solution with a tail which

drags behind a steadily moving endpoint and asymptotically approaches the horizon has

been proposed [17 – 19] as the configuration dual to a steadily moving quark in the N = 4

plasma, and was used to calculate the drag force on the quark.

A stationary quark-antiquark pair or “meson”, on the other hand, corresponds to a

string with both endpoints ending on the D7-brane [38, 39, 5]. A class of such solutions,

namely smooth, static solutions (v = 0), have been used to calculate the inter-quark

potential in SYM plasmas. Smooth, stationary solutions (v 6= 0) for steadily moving quark

pairs exist [34, 35, 37, 42, 43] but are not unique and do not “drag” behind the string

endpoints as in the single quark configuration. This lack of drag has been interpreted to

mean that color-singlet mesons are invisible to the SYM plasma and so experience no drag

(to leading order in large N) although the string shape is dependent on the velocity of the

meson with respect to the plasma. (These timelike Lorentzian string solutions are reviewed

in section 3, below.)

On the other hand, a prescription for computing the jet quenching parameter q̂ using

the lightlike limit of spacelike Lorentzian configurations has been proposed in [16].1 In

this paper, we restrict ourselves to timelike Lorentzian and Euclidean configurations, and

address spacelike Lorentzian configurations in [44].

Summary. Concretely, we consider a smooth stationary string in the background of an

AdS5 black hole with metric

ds2
5 = hµνdxµdxν = η

r4 − r4
0

r2R2
dx2

0 +
r2

R2
(dx2

1 + dx2
2 + dx2

3) +
r2R2

r4 − r4
0

dr2. (1.1)

R is the curvature radius of the AdS space, and the black hole horizon is located at r = r0.

Since we are interested in (timelike) Lorentzian as well as Euclidean configurations, we have

introduced the factor η; for Lorentzian signature η = −1 while for Euclidean signature it

equals +1.

We put the endpoints of the string on a probe D7-brane at radius r7.
2 The classical

dynamics of the string in this background is described by the Nambu-Goto action

S =
η

2πα′

∫

dσdτ
√

η G, (1.2)

1See footnote 14 of [34]. We thank H. Liu, K. Rajagopal, and U. Wiedemann for correspondence

clarifying this point.
2The background (1.1) can be lifted to ten dimensions on a 5-sphere, where it is the near-horizon

geometry of a stack of N non-extremal D3-branes. The probe D7-brane wraps an S
3 inside the S

5 and fills

the entire AdS5 background down to a minimal radius r7 [5, 45 – 49]. We assume no motion on the S
5, and

so use the five-dimensional perspective.
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where G = det(Gαβ), Gαβ = hµν∂αXµ∂βXν is the induced metric on the string worldsheet,

and ∂α := ∂/∂ξα, with ξα = {τ, σ} being the worldsheet coordinates. Here Xµ run over

the five coordinates {x0, x1, x2, x3, r}.
The steady state of a quark-antiquark pair with constant separation and moving with

constant velocity either perpendicular or parallel to the separation of the quarks can be

described (up to worldsheet reparameterizations) by the worldsheet embedding

[v⊥] : x0 = τ, x1 = vτ, x2 = σ, x3 = 0, r = r(σ),

[v||] : x0 = τ, x1 = vτ + σ, x2 = 0, x3 = 0, r = r(σ), (1.3)

where the first is for the velocity perpendicular to the quark separation, and the second

parallel to it. In both cases we take boundary conditions

0 ≤ τ ≤ T, −L

2
≤ σ ≤ L

2
, r(±L/2) = r7, (1.4)

with r(σ) smooth.3

In section 2 we derive the equations of motion describing configurations corresponding

to quark-antiquark pairs, in both Lorentzian as well as Euclidean signature, which are

stationary and smooth. As argued in [35], smooth string configurations cannot drag behind

their endpoints as they dip down from the D7-brane. Among these no-drag configurations,

we concentrate on two simple geometries, where the common velocity of the quark pair is

either perpendicular or parallel to their separation.

We examine the timelike Lorentzian solutions of these equations in some detail in

section 3. In the case that the meson velocity is perpendicular to the quark separation

L, we review the known solutions. Up to a maximum L ≤ Lc(v) which decreases with

increasing velocity, there are two branches of Lorentzian solutions: one “long” whose radial

turning point is closer to the horizon than the “short” solution. For L > Lc(v), quark-

antiquark pairs only exist as free states described by two disconnected strings. These two

branches, as well as the complete screening length, have been discussed in [34, 35, 37, 42,

43]. The long string solution which makes it closer to the horizon has been argued to be

unstable [35, 43] and presumably decays into the shorter string configuration which shares

the same boundary conditions. This is supported by the fact, shown in section 4, that the

energy of the Euclideanized version of the long string configuration is greater than that of

the short string.

When the meson velocity is parallel to the quark separation, the long string configura-

tions are not smooth, but instead develop a cusp at the midpoint for a range of velocities.

The tip of the cusp is lightlike. On the other hand, the short string solution is always

smooth.

3The endpoints of a string on a D-brane satisfy Neumann boundary conditions in the directions along

the D-brane, whereas the above boundary conditions are Dirichlet, constraining the string endpoints to

lie along fixed worldlines a distance L apart on the D7-brane. The correct way to impose these boundary

conditions is to turn on a worldvolume background U(1) field strength on the D7-brane [17] to keep the

string endpoints a distance L apart.
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In section 4 we examine the Euclidean string configurations in detail. Their main

interest lies in the fact that their relative thermodynamic stability can be determined by

comparing their actions (energies). However, we find that not all Euclidean solutions have

Lorentzian counterparts.

Euclidean configurations for which the velocity is parallel to their separation share

some of the same characteristics as the timelike Lorentzian configurations. Namely, there

tend to be two different branches of solutions, except when v > 1, for which there is only

one. (There is no restriction to v < 1 for Euclidean strings; v is more properly thought of

as a slope parameter, rather than a velocity.) Also, there is a maximum distance between

the quark and the antiquark past which only free quarks exist.

On the other hand, for Euclidean configurations with velocity perpendicular to their

separation, the discussion of the various branches of string solutions becomes more involved.

Firstly, some of the branches no longer have a maximum value of L. Secondly, the number

of branches now depends on the velocity. In particular, for low velocities there are actually

four branches of solutions, while only two branches exist for higher velocities. The solutions

in which the string dips closer to the black hole horizon are less energetically favorable.

2. Equations of motion

According to the AdS/CFT correspondence [4] strings ending on the D7-brane are equiva-

lent to quarks in a thermal bath in four-dimensional finite-temperature N=4 SU(N) super

Yang-Mills (SYM) theory. The standard gauge/gravity dictionary is that

N = R4/(4πα′2gs), λ = R4/α′2, β = πR2/r0, m = r7/(2πα′), (2.1)

where gs is the string coupling, λ := g2
YM

N is the ’t Hooft coupling of the SYM theory, β the

inverse temperature of the SYM thermal bath, and m the quark mass at zero temperature.

In the semiclassical string limit, i.e., gs → 0 and N → ∞, the supergravity approximation

in the gauge/gravity correspondence holds when the curvatures are much greater than the

string length, `s :=
√

α′. Furthermore, in this limit the mass of the quark is identified with

the energy (in some units) of the associated string which, for a static configuration, is just

proportional to the value of the Nambu-Goto action (1.2).

Now, the string embeddings (1.3) considered here (and elsewhere) depend on three

additional parameters: T , L, and v. According to the standard AdS/CFT dictionary,

these are the time for which the quarks are propagating, their separation at a given time,

and their common velocity, respectively– all in the plasma rest frame. Also, it is easy to

see from (1.1) and (1.3) that, for Lorentzian (η = −1) solutions, the proper velocity V of

the string endpoints on the r = r7 surface in the AdS black hole background is related to

the velocity v in the four-dimensional field theory by

V =
r2
7

√

r4
7
− r4

0

v. (2.2)

Note that real string solutions must have the same signature everywhere on the worldsheet.

Thus, a string worldsheet will be timelike or spacelike depending on whether V , rather than
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v, is greater or less than 1. In particular, the string worldsheet is timelike for V < 1 which

in terms of v translates into v <
√

1 − (r0/r7)4. (In Euclidean signature, v is more properly

thought of as an angular parameter, and V is likewise a proper version of this parameter as

measured in the Euclidean AdS black hole metric. This will be discussed more in section

4.2.)

With the embeddings (1.3) and boundary conditions (1.4), the action becomes

[v⊥] : S =
ηT

γ πα′

∫ L/2

0

dσ

√

r4 − γ2r4
0

R4
+

r4 − γ2r4
0

r4 − r4
0

r′2,

[v||] : S =
ηT

γ πα′

∫ L/2

0

dσ

√

γ2
r4 − r4

0

R4
+

r4 − γ2r4
0

r4 − r4
0

r′2, (2.3)

where r′ := ∂r/∂σ and

γ2 :=
1

1 + ηv2
. (2.4)

Thus, γ is the usual relativistic γ-factor for Lorentzian signature (η = −1), while it is

always a positive number less than 1 for Euclidean signature (η = +1).

We find for the equations of motion

[v⊥] : r′2 =
1

γ2 a2r4
0
R4

(r4 − r4
0)(r

4 − γ2[1 + a2]r4
0),

[v||] : r′2 =
γ2

a2r4
0
R4

(r4 − r4
0)

2 (r4 − [1 + a2]r4
0
)

(r4 − γ2r4
0
)

, (2.5)

where a2 is a real integration constant. Although we have written a2 as a square, it can be

either positive or negative. Using (2.5), the determinant of the induced worldsheet metric

becomes

[v⊥] : G = η
1

γ4 a2r4
0
R4

(r4 − γ2r4
0)

2,

[v||] : G = η
1

a2r4
0
R4

(r4 − r4
0)

2. (2.6)

Thus, the sign of G is the same as that of ηa2 (since the other factors are squares of

real quantities). In particular, for Euclidean signature (η = +1) all real worldsheets have

G > 0, and so we must take a2 > 0. For Lorentzian signature (η = −1), the worldsheet is

timelike (G < 0) for a2 > 0 and spacelike for a2 < 0.

The reality of r′ implies that the right sides of (2.5) must be positive in all these

different cases. This positivity then implies certain allowed ranges of r. There can only

be real string solutions when the ends of the string, at r = r7, are within this range. The

edges of this range are (typically) the possible turning points, rt, for the string. We will

describe the possible values of rt for the timelike Lorentzian and Euclidean cases in the

following sections.
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Given these turning points, (2.5) can be integrated for a string solution which goes

from z7 to the turning point zt and back to give

[v⊥] : L/β =
2aγ

π

∫ z7

zt

dz
√

(z4 − 1)(z4 − (1 + a2)γ2)
,

[v||] : L/β =
2a

πγ

∫ z7

zt

dz
√

z4 − γ2

(z4 − 1)
√

z4 − (1 + a2)
, (2.7)

where we have used r0 = πR2/β. Also, in (2.7) we have rescaled z = r/r0 and likewise

zt := rt/r0 and z7 := r7/r0. These integral expressions determine the integration constant

a2 in terms of L/β and v.

Also, we can evaluate the action for the solutions of (2.5) to be:

[v⊥] : S =
ηT

√
λ

γβ

∫ z7

zt

(z4 − γ2) dz
√

(z4 − 1)(z4 − γ2[1 + a2])
,

[v||] : S =
ηT

√
λ

γβ

∫ z7

zt

dz

√

z4 − γ2

z4 − [1 + a2]
, (2.8)

where we have used R2/α′ =
√

λ. For finite z7, these integrals are convergent. They diverge

when z7 → ∞, and need to be regularized by subtracting the self-energy of the quark and

the antiquark [38, 39].

3. Timelike Lorentzian solutions

Turning now to timelike Lorentzian (η = −1) string configurations, we see from (2.6) that

the integration constant a2 must be positive. An analysis of (2.5), bearing in mind (2.2),

easily shows that real solutions can exist only for v <
√

1 − z−4

7
and as long as the string

is at radii satisfying

[v⊥] : r4/r4
0 > γ2(1 + a2),

[v||] : r4/r4
0 > max

{

γ2, 1 + a2
}

. (3.1)

We will first briefly review the case in which the velocity of the quark-antiquark pair is

perpendicular to their separation [34, 35, 37] and then consider the parallel case.

3.1 Timelike Lorentzian: perpendicular velocity

Equation (3.1) implies that the radial turning point of the string is at z4 := (r/r0)
4 =

γ2(1 + a2). It also implies that, for a given velocity parameter v, the minimum D7-brane

radius z7 := r7/r0 reached by the probe must also be set to be greater than this value. (z7

should also be set greater than the critical value zc
7 ≈ 1.02, below which the D7-brane dips

into the horizon, changing the topology of the space [45 – 49].)

For a given choice of z7, (2.7) can be numerically integrated to give L/β as a function

of a, as shown in figure 1 for a few sample velocities with the choice z7 = 2. (A similar

– 6 –
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4 8
a

0.1

0.2

0.3
L�Β

Figure 1: L/β as a function of a for timelike Lorentzian string configurations with velocity per-

pendicular to the quark separation, z7 = 2, and γ = 1 (dark blue), 1.5 (light blue), 2 (green), 3

(black), and 3.8 (red).

z=1 z=4

L

Figure 2: Timelike Lorentzian string configurations with velocity perpendicular to the quark

separation, L/β = 0.1, and γ = 1 (blue), 1.5 (green), 2 (black), and 2.1 (red). For each velocity

there are two string solutions, one long and one short. The black hole horizon (solid black line) is

at z = 1 and the minimal radius reached by the probe D7-brane (dotted line) is at z = z7 = 2.

plot has already been presented in [35].) The qualitative features of the plots are not

sensitive to the particular value of z7, though one should bear in mind that the range of

allowed velocity parameters v depends on z7, since the string endpoints become spacelike

for γ > z2
7 , as can be seen from (2.2).

Figure 1 illustrates the fact that, for each value of L that is less than a critical value

Lc(v), there are two corresponding values of a, and Lc(v) decreases with increased velocity

v. We shall refer to the branch of string configurations with smaller (larger) a for a given

L as the long (short) configurations. For L > Lc there is no connected string solution: Lc

corresponds to a complete screening length past which quarks and antiquarks only exist as

free states [30, 34, 35, 37].

We have plotted in figure 2 both long and short string configurations for fixed L/β

and various velocities. The radial direction is horizontal, the x2-direction is vertical and

the velocity is orthogonal to both. The black hole horizon is represented by the solid black

line at z = 1 and the probe D7-brane corresponds to the dashed line at z = z7. For zero

– 7 –
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velocity (blue curves), the long string configuration almost touches the black hole horizon.

As the velocity is increased so the string worldsheets become more nearly lightlike (V → 1,

or γ → 4), the long and short string configurations shorten and lengthen, respectively,

and approach a common limiting shape (between the red curves). They coincide when the

velocity reaches some γ = γc (γc ≈ 2.112 for the specific values of L/β and z7 in the figure).

This is the value of the velocity parameter where Lc = L; for greater velocities there are no

string solutions for this given L and z7. A general qualitative property of these solutions is

that for any fixed L and z7 there is no lightlike limit of these timelike string configurations:

the limiting L = Lc is reached before V = 1.

We will see in section 4 that the Euclidean counterparts of the long string solutions

are not energetically favored. This indicates that this branch of solutions is not stable: a

long string state presumably decays into the corresponding short string which has the same

boundary conditions. The instability of the long string configurations was hypothesized

in [35] and has been argued for dynamically in [43].

3.2 Timelike Lorentzian: parallel velocity

We will now look at the situation for which the velocity is in the same direction as the

quark-antiquark separation. Recall that reality of r′ and the equation of motion (2.5)

implied (3.1); that is, the allowed region is z4 > max{γ2, 1+a2}. Unlike the perpendicular

case, this boundary is not always a smooth turning point of the string. In particular, (2.5)

implies that r′ = 0 when z = 1 + a2, which is a smooth turning point (the string reaches

a minimum); but r′ = ∞ when z4 = γ2. This latter behavior signals the development

of a cusp at the string midpoint. As we discussed in section 2, z4 = γ2 is also the place

where the string worldsheet changes from timelike to spacelike signature. Since, by (2.6),

real string solutions cannot change their worldsheet signature, we conclude that whenever

γ2 > 1 + a2 this cusp is unavoidable.4

It is not obvious when γ2 > 1 + a2 is satisfied, since a2 is determined in terms of v

through (2.7). In figure 3 we integrate (2.7) for various velocities to give an indication

of how a depends on L and v. Figure 3 actually shows the quark separation L0 := γL

in the quark rest frame rather than the separation L in the plasma restframe. There are

two branches of solutions for a when L0 < L0c(v), none when L0 > L0c(v), and L0c(v)

decreases for increasing v. This is qualitatively similar to the perpendicular velocity case.

The shaded region in figure 3 is for γ2 > 1+a2, in which case the string solutions have

a cusp. Note that this region lies to the left of the maximum of the constant-v curves in

4Without this physical argument, one might imagine that the r
′ = ∞ vertical tangent is a signal not

of a cusp, but just that the string solution should be extended to include a smooth but self-intersecting

closed loop. The worldsheet embedding (1.3) we have used does not allow for this extension, and so one

might think that the cusp could be avoided by using a different embedding. For example, instead of using

a parameterization in which x1 = vτ + σ as in (1.3), which forces the string to vary monotonically in the

x1 direction, one might use a different parameterization with, say, r = σ and x1 = vτ + x(σ) for some

undetermined function x(σ). This would, in principle, allow the string to cross itself and form a smooth

loop. However, reworking our calculations in this alternative parametrization gives equations of motion

completely equivalent to (2.5). Thus, this possibility is not realized, and the cusps cannot be avoided, in

agreement with the physical argument.

– 8 –
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2 4
a

0.1

0.2

L0�Β

2 4
a

0.1

0.2

L0�Β

Figure 3: L0/β as a function of a for a timelike Lorentzian string with velocity parallel to quark

separation, z7 = 2, and γ = 1 (dark blue), 1.5 (light blue), 2 (green), 3 (black), and 3.8 (red).

Strings corresponding to points in the shaded region have cusps.

z=1 z=4

L0

Figure 4: Timelike Lorentzian configurations with velocity parallel to quark separation, L0/β =

0.1, and γ = 1 (blue), 1.5 (green), 2 (black) and 2.5 (red).

the figure. This means that the large-a (short string) solutions never have cusps but that,

depending on the values of L0 and v, the long string solutions may. Typically, for given

L0 the long string solutions for small enough v (close to v = 0) and large enough v (near

where L0c(v) approaches L0) are smooth, while at intermediate v there are cusps.

This is illustrated for z7 = 2 and L0/β = 0.1 in figure 4. There the γ = 0 (blue) and

γ = 2.5 (red) long strings have no cusp, while the intermediate velocity (green and black)

strings do.5 Just as in the case of perpendicular velocity, as v is increased the long and

short strings approach one another until they coincide at a critical value of the velocity

parameter (γ ≈ 2.6173 for the values of the parameters in the figure), beyond which there

are no more connected solutions. Note that this critical velocity parameter is short of

the lightlike worldsheet limit γ = z2
7 so that, as in the case of perpendicular velocity, no

5The appearance of a kink — for which there is a finite opening angle — rather than a cusp in the green

and black long strings in figure 4 is misleading: the cusp behavior is apparent with sufficient resolution.
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lightlike worldsheet limit of the connected timelike configuration exists at fixed L0 and z7.

4. Euclidean strings and their energetics

Real Euclidean (η = +1) string configurations must have positive integration constant a2,

by (2.6). An analysis of (2.5) easily shows that real solutions can exist for any v (since now

1 ≥ γ > 0 for all v) as long as the string is at radii satisfying

[v⊥] : r4/r4
0 > max

{

1, γ2(1 + a2)
}

,

[v||] : r4/r4
0 > 1 + a2. (4.1)

Nothing special happens in Euclidean signature as the “velocity” parameter v → 1. Indeed,

v is more properly thought of as an angular parameter in Euclidean space, though we will

still refer to it as the velocity parameter.

Note that there are Euclidean solutions which are not Wick rotations of Lorentzian

ones. Lorentzian and Euclidean equations of motion (2.5) are related to each other simply

by taking v2 → −v2. However, this does not mean that the corresponding solutions are

simply related by Wick rotations since, under v2 → −v2, the behavior of the turning points

can change qualitatively. In particular, timelike Lorentzian solutions with perpendicular

velocity always have r4
t = γ2(1 + a2)r4

0
> r4

0
and so the string never reaches the horizon.

On the other hand, for a < v there is a branch of Euclidean solutions which have the

radial turning point on the black hole horizon r = r0. This branch of solutions has no

physical Lorentzian counterpart. Other examples of Euclidean string configurations with

no physical Lorentzian counterpart are easy to come by. For instance, the Wick rotation of

a steadily moving, purely radial Euclidean string stretched between a probe D7-brane and

the black hole horizon fails to exist in Lorentzian signature, since there is an intermediate

radial point below which the string travels faster than the speed of light.

4.1 Euclidean: perpendicular “velocity”

A numerical plot of L/β as a function of a for various velocities is shown in figure 5. We

have set z7 = 2 as an example, though the plot is qualitatively unchanged for other values

of this parameter. Since Wick rotation amounts to changing the sign of v2 in the equations,

the configuration with v = 0 is exactly the same for Lorentzian and Euclidean signatures.

In particular, there are no solutions for L > Lc, and for a given value of L < Lc there

are two string configurations. For v > 0, however, the story changes dramatically. Firstly,

there is no longer a maximum value of L. Secondly, the number of branches of solutions

depends on L as well as the velocity. For intermediate velocities, two new branches of

configurations emerge which have no Lorentzian counterparts. This is shown in the upper

right region of figure 5 for v = 0.25. One new branch, which is denoted by the red curve,

has a < v and exists for all values of L/β. For small and large values of L/β, there is

only one branch of blue solutions but for intermediate values of L/β there are actually

three branches. For sufficiently large v, only one branch of blue solutions occurs. This is

illustrated in the lower left region of figure 5 for v = 0.5. For larger values of v there are no
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Figure 5: L/β as a function of a with z7 = 2 for Euclidean configurations with v = 0, 0.25, 0.5

and 1, for which the velocity is perpendicular to the quark separation. The red and blue curves

represent solutions with a < v and a > v, respectively.

HaL

z=1 z=10

L

HbL

z=1 z=1.02

HcL

z=1 z=10

L

Figure 6: Euclidean string configurations with perpendicular velocity, L/β = 0.25 and z7 = 2.

(a): Four solutions when v = 0.25, with a values of approximately 0.237 (red), 0.290 (black), 0.423

(green) and 1.172 (blue). (b): Two solutions when v = 0.5 with a values approximately 0.397 (red)

and 1.503 (blue).

qualitative changes, as illustrated in the lower right of figure 5 for v = 1. (Nothing special

happens at v = 1 in Euclidean signature.)

To better illustrate this, the four different string configurations for v = 0.25 and

L/β = 0.25 are plotted in figure 6(a). Only the a < v configuration, represented by the red

curve, actually touches the black hole horizon. Only two of the branches of configurations

remain for all L/β as the velocity is further increased, as illustrated in figure 6(b) for

v = 0.5.

Which of these states is the physical one for a given set of parameters can be determined

by comparing their energies. The intuition that the blue curve represents the energetically

favorable solution, since it does not stretch as far towards the black hole, is born out by a

calculation of the energies. The energy of the Euclidean string configurations is given by
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√

λ/β versus L/β for Euclidean configurations with perpendicular

velocity, z7 = 2, and v = 0, 0.1, and 0.5. The red and blue curves represent solutions with a < v

and a > v, respectively, while the green line is the subtracted energy of two straight strings.
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Figure 8: L0/β as a function of a for Euclidean string configurations with parallel velocity, z7 = 2,

and v = 0 (blue), 0.5 (light blue), 1 (purple), 2 (light red), and 5000 (red).

S/T , where S is the Nambu-Goto action given by (2.8) and T is the time interval.

It is more illuminating to discuss the energy difference E between these configurations

and some standard string configuration. A simple and natural fiducial configuration to

choose is that of two disconnected strings moving at “velocity” v which stretch from the

probe D7-brane to the black hole horizon. So in our discussion below we will measure

energies in comparison to these straight string configurations, which therefore have energy

E = 0 by definition.

Eβ/
√

λ versus L/β is plotted in figure 7 for various velocities for the aforementioned

– 12 –



J
H
E
P
0
1
(
2
0
0
7
)
1
0
5

configurations. The case of vanishing velocity has already been considered in [40, 41]. As

before, the red curve represents the string configuration with a < v, which reaches the black

hole horizon. There are multiple configurations with a > v for a given L (blue curves),

depending on the velocity. The energy of the fiducial straight string configuration is given

by the E = 0 line.

As can be seen from figure 7, for L less than a critical value, the energetically favorable

state is represented by the blue curve. This is the string configuration that remains the

furthest from the black hole horizon and is the Wick rotated counterpart of the timelike

Lorentzian short string solution with perpendicular velocity that was discussed in section

3. As the distance between the quark and antiquark increases to the critical value, the

subtracted energy of this configuration becomes positive. At this point, it is energetically

favorable for the string to separate into two straight strings (green line). Note that the long

string configuration (red curve) is always less energetically favorable than the short strings

(blue curve), which agrees with the claim that the corresponding Lorentzian configurations

are unstable [35, 43].

It is tempting to identify the transition from the short string solution (blue) to the two

straight string solution (green) as the transition in the field theory from a bound quark and

antiquark pair to free quark pair due to complete screening by the thermal bath. However,

this interpretation is problematical. The reason is that, as mentioned earlier, the straight

Euclidean string is not the Euclidean rotation of any straight Lorentzian string solution

(since at any nonzero v such a straight Lorentzian string becomes lightlike before it reaches

the horizon, and so fails to exist as a solution). A physically acceptable Lorentzian free

quark solution is the dragged string solution of [17, 18], so it may be more appropriate to

compare the energy of the Euclidean short string solution (blue) to that of the Euclidean

rotation of a pair of dragged strings instead. See [35] for a discussion of the issues involved

in making this comparison. So the transition between the blue and green configurations

illustrated in figure 8 gives at best an upper bound on the critical L at which complete

screening by the SYM thermal bath occurs.

4.2 Euclidean: parallel “velocity”

For Euclidean string configurations with parallel “velocity”, (4.1) shows that the radial

turning point is at r = (1 + a2)1/4 r0. Such solutions with V < 1 are Wick rotations of the

timelike Lorentzian solutions with corresponding turning point (e.g., all those outside of

the shaded region in figure 3). In contrast to the configurations with perpendicular velocity,

there is always a maximum L regardless of the magnitude of the velocity. Also, there are no

string configurations that reach the black hole horizon. L0/β versus a for various velocities

is shown in figure 8. In Euclidean signature, L0 := γL measures the shortest distance

between the “worldlines” of the endpoints of the strings. Since arctan(V ) measures the

angle between these worldlines and the constant-x1 planes, in the limit V ∼ v → ∞ the

worldlines coincide and L0 → 0. The curves in figure 8 ascend from v = 0 to v = ∞. For

V < 1 there are two solutions for each value of L < Lc. The short string configurations

correspond to the part of the curves to the right of the peak in figure 8, while the long

configurations correspond to the left side. For V > 1 there is only one solution and,
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as v → ∞, Lc/β →
√

z4
7
− 1/(2z2

7). Thus, Lc increases as the boundary worldlines are

oriented more along the x1 direction.
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